A Two-Dimensional Version of the Godunov Scheme for Scalar Balance Laws
نویسنده
چکیده
A Godunov scheme is derived for two-dimensional scalar conservation laws without or with source terms following ideas originally proposed by Boukadida and LeRoux [9] in the context of a staggered Lax-Friedrichs scheme. In both situations, the numerical fluxes are obtained at each interface of a uniform Cartesian computational grid just by means of the “external waves” involved in the entropy solution of the elementary 2d Riemann problems; in particular, all the wave-interaction phenomena is overlooked. This restriction of the wave pattern suffices for deriving the exact numerical fluxes of the staggered LxF scheme, but it furnishes only an approximation for the Godunov scheme: we show that under convenient assumptions, these flux functions are smooth and the resulting discretization process is stable under nearly-optimal CFL restriction. A well-balanced extension is presented, relying on the Curl-free component of the Helmholtz decomposition of the source term. Several numerical tests against exact 2D solutions are performed for convex, non-convex and inhomogeneous equations and the time evolution of the L truncation error is displayed.
منابع مشابه
Convergence of Godunov-Type Schemes for Scalar Conservation Laws under Large Time Steps
In this paper, we consider convergence of classical high order Godunov-type schemes towards entropy solutions for scalar conservation laws. It is well known that sufficient conditions for such convergence include total variation boundedness of the reconstruction and cell or wavewise entropy inequalities. We prove that under large time steps, we only need total variation boundedness of the recon...
متن کاملGodunov-Type Methods for Conservation Laws with a Flux Function Discontinuous in Space
Abstract. Scalar conservation laws with a flux function discontinuous in space are approximated using a Godunov-type method for which a convergence theorem is proved. The case where the flux functions at the interface intersect is emphasized. A very simple formula is given for the interface flux. A numerical comparison between the Godunov numerical flux and the upstream mobility flux is present...
متن کاملAerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملOn Large Time Step Godunov Scheme for Hyperbolic Conservation Laws
In this paper we study the large time step (LTS) Godunov scheme proposed by LeVeque for nonlinear hyperbolic conservation laws. As we known, when the Courant number is larger than 1, the linear interactions of the elementary waves in this scheme will be much more complicated than those for Courant number less than 1. In this paper, we will show that for scalar conservation laws, for any fixed C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 52 شماره
صفحات -
تاریخ انتشار 2014